Do you smell dirty clothes in your indoor building? Do you suspect your heating ventilation and air conditioning system of causing the smells?

It might be what’s called, “Dirty sock syndrome”. Typically found in high humidity locations. A brief video overview can be found here (You Tube 2:03)

Lawrence Berkeley National Laboratory has good information on indoor air quality and how it affects people as they work. They also have some scientific information about how improving the indoor space (by ventilation, temperature, particles, etc) can create a better environment.

AIHA has a “Position Statement on Mold and Dampness in the Built Environment” (March, 2013).  It lays out the reasons to control moisture in a building, and some basic steps for remedy (spoiler: air sampling doesn’t usually help).

Bottom line: Check your coils before replacing your entire system. Replacing these might be cheaper. Or, sometimes they can be cleaned, but it is a strict protocol. One possible solution is here (I do not endorsement, or recommend this particular product/brand. Do your own research).

Unfortunately I have no problem finding an appropriate picture for this blog on Ebay. People are weird. Yuk.

dirty sock

Let’s clarify: You are a working adult. You are feeling symptoms (of some sort). And, you think it’s from something your exposed to while at work (in construction). This could include, but will not, the flu-bug. Below is a list of the most common construction illnesses.

Most Common Construction Illnesses:

  1. Upper respiratory
    • could be from silica, drywall, dust, asbestos, nuisance dust, chemicals (I won’t even try to list all of them)
  2. Skin (dermal, dermatitis) damage –
    • From: concrete, abrasion, chemicals
  3. Eyes
    • mostly from things that get into the eye.
  4. Cumulative trauma (ergonomics) or inflammation
    • repetitive motion, over a day hurts, imagine this for years
  5. Burn (heat or chemicals)
    • Usually around hot work like welding, but this can occur when using certian chemicals
  6. Hearing loss
    • cumulative trama to the ears when exposure is above about 85 decibels for any extended period of time.
  7. Poisoning– General or systemic
    • From: poison ivy, stinging needles, dog bites, bees, etc.

This list may vary depending on many things including what type of construction you are in; GC, heavy, civil, specialty, etc.  I put this list together to get a picture of where we see illnesses. However, as previously mentioned, and, everyone knows, the FOCUS FOUR is really where most injuries occur in construction.

We have seen the most prevention of illness due to one single device:

back supportthe back support.   ha. just kidding, of course.

Industrial hygiene (aka occupational hygiene) focuses on occupational-related diseases due to many reasons.home fireplace

Have you considered, at your home, maybe even as you sleep, you might be exposed to something hazardous? Below are seven possible hazards in your home (related to IH):

  1. Radon. It comes from the ground and they say it causes cancer* (*some people question this toxicological data). You must perform a test to know if you have hazardous levels.
  2. Formaldehyde. If you have a newer house you have 2 things going against you: 1. your house is tightly built (no air leaks and limited fresh air) and 2. more particle board (recycled wood) was used in construction. Also, many furniture contains multidensity fiber wood (MDF) which off gas formaldehyde. Again test for it to know if you have dangerous levels.
  3. Lead. Is your house built prior to 1978? It probably has leaded paint. Any remodeling might distrupt it and you can expose your kids to lead.
  4. Isocyantes. (HDI, TDI, MDI, and others) Can cause asthma & respiratory issues. If your house was insulated with spray foam (polyurethane type) it needs to off-gas for awhile before you move right in.
  5. Asbestos. Causes cancer when airborne. If your house was built prior to 1980, you might have asbestos in your pipe insulation, popcorn ceiling, etc. Be sure and have it checked prior to remodeling.
  6. Mold. Respiratory diseases.
  7. Cleaning products. The symptoms can vary depending on the type of chemicals in the product. Use the recommended gloves, eye protection and respirator, if necessary, while cleaning with chemicals.

Do not be overly concerned about any one thing. Simply test and make any necessary adjustments. However, do keep in mind that most health recommendations for substances relate to normal working adults who go home to a non-hazardous place. There can be issues if you are either: not considered in the general population of healthy workers and, you go home to a place that isn’t free of additional hazards.

Let me first say that I am still learning about this hazard and why it is so dangerous.

Polyurethane foam is used as an insulating material. More info on it’s uses here. The danger is when you spray it (think: expandable type), or apply it, or cut/remove it after it’s cured. The danger is in the off-gassing.

There are two main considerations:spray foam

  • the process of applying the foam
    • spray type
    • quantity?,
    • ventilation?
  • the type (manufacturer/brand/type) of foam
    • curing rate,
    • type of hazard, etc.

What we know is that there is a hazard. AND, this hazard may not effect everyone, OR, it may not effect you until some time has gone by. But, some of the chemicals in these types of products include:

There is a huge potential for work related asthma when using these types of products. And, even contact with the skin can trigger an allergic response/asthma attack. If you have employees working around this type of product and have ANY respiratory symptoms (or asthma), please have them checked by an occupational medicine doctor.

Control of this hazard should include:

  • PPE for employees (respiratory, eye, & skin protection)
  • ventilation during application
  • ventilation during off-gassing & curing (can be 72 hours)
  • control plan for spills, cutting & demo
  • control plan for employee/occupants with asthma

The EPA has a quick reference card here (hat tip to Tom), and more detail from the EPA on how to control the hazard here. The Spray Polyurethane Foam Alliance has free training here (haven’t checked it out though), and be mindful that anyone can be an instructor (good & bad).