Chemical Exposure


Unfortunately this website has taken a backseat to actual work. My apologies for not updating the information, and especially to trusted subscribers of this site.

In the coming months, I plan to publish more posts with the same type of information. Thanks for hanging on. – Alden

As a preview: Did you notice that the State of Michigan OSHA (MIOSH) has updated (lowered) their lead (Pb) blood level mandates? Sadly, it took a lot of people being overexposed to lead (remember Flint, MI?) in order to make this simple change. I hope other states follow.

You’ve probably heard of this issue in the news, originally from the CBS News 60-minutes Show, March 1, 2015.

Formaldehyde is NOT good to have indoors, especially with kids (or those with upper respiratory issues). I believe there are a lots of homes and facilities with issues (which are not reported).

There are is some good information out there if you are worried you may have this flooring in your home or business. In summary, here are some notable points:

  • you should really ignore the people pushing this issue (remember they shorted the stock before the news story)
  • formaldehyde is used in a lot of product during manufacturing
  • go to Lumber Liquidators and get your free test kit
  • if you find high levels of formaldehyde, do something.
  • But, the solution may not be to tear out your floors.
  • Remember, formaldehyde can come from many sources.

Here’s a good article on the subject from Galson Labs. If you have concerns, hire a qualified industrial hygienist.

 

Confession: I missed the assessment of this hazard the first time.

Awhile back I performed air sampling during aluminum welding. The welders were cordial and let me crawl over their welding equipment, poke around old boxes of wire and metal stock. I did not think there were any “real” hazards. We did find some airborne levels of various metals. From the picture can you tell who did the most welding?

welding mce

After I had performed the sampling and the report was sent, I was asked if I had checked for ozone (O3)? I admitted I hadn’t and asked if it was an issue? Well, apparently it is (or rather, might be).

I went back to the shop, begged for another chance, and performed ozone sampling. It wasn’t difficult, but eating crow was the hardest part.

More information on the subject can be found at: NIOSH, UK- HSE. Ozone is formed when the UV radiation hits oxygen. The ACGIH TLV is variable (see table below)ozone acgih, and the OSHA PEL is 0.1 ppm.

Health: Ozone, O3, can cause lots of different respiratory illnesses. These can include a decrease in lung function, aggravation of asthma, throat irritation/cough, chest pain, shortness of breath, inflammation of lungs, and a higher susceptibility to respiratory illnesses. ACGIH classifies it as an A4, or not a suspected carcinogen.

Luckily the results were found to be non-detectable (“IH talk” for none-found). Which only means I didn’t find it, not that it is not there. I sampled for a long time (530 minutes) because they were working 10 hour shifts. But, they only welded for a total of approximately 1.5 hours during that time.

If welders are in a confined area, or a small space with limited ventilation, the results might be significantly different.

 

It is officially summer and construction road crews & roofing is in full swing. Some projects require the use and application of coal tar pitch. Not only is it stinky, it is is hazardous.

Here’s some info:

  • Uses
    • Roofing
    • Asphalt seal coating
    • Pharmaceutical treatment for psoriasis (scalp/skin condition)
    • Graphite industry (in the production of graphite)
  • General
    • Coal tar pitch is actually a make-up of a bunch of different substances (maybe even 10,000 of them)
    • Contains lots of polycyclic aromatic hydrocarbons (PAHs) and other chemicals including: benzene, pyrene, benzo(a)pyrene, phenanthrene, anthracene
  • Exposure
    • can be exposed by inhalation, ingestion (is this likely?), or exposure to skin, eyes
    • considered a carcinogen if the product contains more than 5% of coal tar
    • cancers include: skin, scrotal, lungs, bladder, kidney & digestive
    • increases your sensitivity to sunlight (easier to sunburn)
  • Safety
    • Pick a sealant/coating that does not contain coal tar. A list of some can be found here.
    • Avoid inhalation & skin/eye contact
    • Train your employees. A sample safety SDS (MSDS) can be found here.
    • Wear the correct PPE.
    • Air sample to determine exposures. OSHA has a method (58).
  • Resources

asphalt

This question gets asked a lot, and in many different ways. Such as:asbestos iron

  • Will I get hurt if I touch asbestos? (aka: How long can I be exposed?)
  • What if I have done siding removal/cutting pipe/removed TSI (etc) on an asbestos containing product, am I safe?
  • If I am only doing going to do touch asbestos for 20 minutes (or ___ time), will I still be in compliance?
  • I am disturbing less than 3 square feet of asbestos, I can do this legally, right?

The answer is:   it depends.

Or, an alternative answer: if you think you are disturbing asbestos; you’d better verify (by performing an air sample).

Nowadays there is no excuse for exposing employees, tenants, neighbors to asbestos. And, really, if you are working with asbestos, you need to be extra diligent to inform everyone about the hazard. The worst situation isn’t from a single exposure to asbestos, or an OSHA fine. The worst situation is this:  when you don’t pre-plan, and then verify your exposure levels. Because, someone will make up a worst case scenario, and at that point, you are already behind.

 

 

Let’s clarify: You are a working adult. You are feeling symptoms (of some sort). And, you think it’s from something your exposed to while at work (in construction). This could include, but will not, the flu-bug. Below is a list of the most common construction illnesses.

Most Common Construction Illnesses:

  1. Upper respiratory
    • could be from silica, drywall, dust, asbestos, nuisance dust, chemicals (I won’t even try to list all of them)
  2. Skin (dermal, dermatitis) damage –
    • From: concrete, abrasion, chemicals
  3. Eyes
    • mostly from things that get into the eye.
  4. Cumulative trauma (ergonomics) or inflammation
    • repetitive motion, over a day hurts, imagine this for years
  5. Burn (heat or chemicals)
    • Usually around hot work like welding, but this can occur when using certian chemicals
  6. Hearing loss
    • cumulative trama to the ears when exposure is above about 85 decibels for any extended period of time.
  7. Poisoning– General or systemic
    • From: poison ivy, stinging needles, dog bites, bees, etc.

This list may vary depending on many things including what type of construction you are in; GC, heavy, civil, specialty, etc.  I put this list together to get a picture of where we see illnesses. However, as previously mentioned, and, everyone knows, the FOCUS FOUR is really where most injuries occur in construction.

We have seen the most prevention of illness due to one single device:

back supportthe back support.   ha. just kidding, of course.

Yea, I know. Strange one, huh? In my time consulting, this is actually the second time I’ve come across this.

It is more commonly know as: Mace (R) or tear gas (not pepper spray though, that is Oleoresin Capsicum). Hopefully you haven’t actually experienced it’s exposure. It is worse (so I’m told) than pepper spray. More differences compared here.  All can be quantitatively measured by your favorite occupational hygienist.

Exposure in construction can come from incidental releases (incident response) or during clean up/ demolition of structures where this was used (think: police entry into a structure).

The OSHA exposure limit is 0.3 mg/m3. (NIOSH REL is the same, ACGIH TLV 0.35 mg/m3). They are all very low, actually.  Exposure can occur by inhalation, eyes, ingestion, and skin exposure.  NIOSH Pocket Guide is here.

Personal protection is a bit interesting. NIOSH recommends a full face respirator with P100 and organic vapor cartridges be used. The interesting part is that using this type of protection would allow exposure (based upon the protection factor) up to 15 mg/m3. Which, incidentally, is also the level as immediate danger to life and health (IDLH) = 15 mg/m3.

Some guides for dealing with this substance can be found here.

Industrial hygiene (aka occupational hygiene) focuses on occupational-related diseases due to many reasons.home fireplace

Have you considered, at your home, maybe even as you sleep, you might be exposed to something hazardous? Below are seven possible hazards in your home (related to IH):

  1. Radon. It comes from the ground and they say it causes cancer* (*some people question this toxicological data). You must perform a test to know if you have hazardous levels.
  2. Formaldehyde. If you have a newer house you have 2 things going against you: 1. your house is tightly built (no air leaks and limited fresh air) and 2. more particle board (recycled wood) was used in construction. Also, many furniture contains multidensity fiber wood (MDF) which off gas formaldehyde. Again test for it to know if you have dangerous levels.
  3. Lead. Is your house built prior to 1978? It probably has leaded paint. Any remodeling might distrupt it and you can expose your kids to lead.
  4. Isocyantes. (HDI, TDI, MDI, and others) Can cause asthma & respiratory issues. If your house was insulated with spray foam (polyurethane type) it needs to off-gas for awhile before you move right in.
  5. Asbestos. Causes cancer when airborne. If your house was built prior to 1980, you might have asbestos in your pipe insulation, popcorn ceiling, etc. Be sure and have it checked prior to remodeling.
  6. Mold. Respiratory diseases.
  7. Cleaning products. The symptoms can vary depending on the type of chemicals in the product. Use the recommended gloves, eye protection and respirator, if necessary, while cleaning with chemicals.

Do not be overly concerned about any one thing. Simply test and make any necessary adjustments. However, do keep in mind that most health recommendations for substances relate to normal working adults who go home to a non-hazardous place. There can be issues if you are either: not considered in the general population of healthy workers and, you go home to a place that isn’t free of additional hazards.

It’s not a secret. (previous article here) Formaldehyde is in many types of composite, pressboard, and multidensity wood products. The EPA is now proposing to limit the amount of formaldehyde that can be added to these types of products.

When you build a structure, these types of products can offgass small amounts of formaldehyde. Even though the total formaldehyde is far less than 1% of the total product by weight/volume (which means it may NOT be listed on the SDS/MSDS- clue: look for the Prop 65 label). This can add up. The EPA is proposing to regulate the amount of formaldehyde a product can off-gas, and provide 3rd party certification framework for regulating it . composite wood

Unfortunately, nowadays “GREEN” products/ or recycled goods can contain a lot of formaldehyde. (used in the process of making & adhering the different recycled materials together).

Expect some push back from industry. Even though it’s a known carcinogen, there is sure to be some push-back.

From what I have seen, there are not a large amount of formaldehyde exposures in construction. However, there is A LOT of formaldehyde used in construction materials. Formaldehyde can be dangerous at levels undetectable by your nose. And, the symptoms of exposure are nondescript (irritant & tingling of eyes, nose, respiratory tract).

Here are some products that may contain trace (or more) amounts of formaldehyde:

  • resins in plywood, MDF, CDX, particle board/fiber board
  • garage doors
  • drywall
  • roofing
  • glues / mastics
  • paint/coatings
  • carpets
  • insulation (spray in and batting)

I believe the reason we do not see high exposures is due to the limited duration of exposure, and the open-aired nature during the construction. Some exceptions are warehouses with large storage areas of particle board/MDF. (I have found exposures in these areas)

The OSHA exposure limit for formaldehyde is 0.75 ppm (action limit of 0.5 ppm, and short term limit of 2 ppm). However, this may not be low enough, based upon other standards (ACGIH says 0.3 ppm, NIOSH 0.1 ppm)

Another major issue with this hazard in construction is once the space is occupied.

  • Once construction is done, the space may be sealed up, heated, and additional curing can occur.
  • This may release more formaldehyde, and also NOT allow as much to escape (by dilution ventilation).
  • Compounding this issue are the type of occupants in the building. Are there children, non-working adults, immunocompromised individuals, sick, or elderly occupying this space? The OSHA standards are NOT protective for these types of people.

I do not forsee this type of sign being posted immediately after new construction.

formaldehydeOn the plus side, someone has discovered that plants may help reduce formaldehyde & VOC levels in homes. Horticulture Science Kwang Jim Kim, et.al

 

Next Page »