Archive for August, 2011

Sometimes it is extremely hard to protect the hands of people in construction. A typical construction worker may need leather gloves all day…until the end of the shift when he uses the solvent to clean his tool. Previous cuts, scrapes and scabs make it easy for chemicals to enter. And, depending on the chemical, it may absorb through the skin, or at least, dry it out.

Below is a employee’s hand who had been working with acetone for years. He badly wanted his hands to feel better.

Here is a link to an excellent article by Donald Groce at EHS Today.

The question I commonly hear is:

Do I need to wear a respirator while cutting concrete wet? What, if so, what type?

To simple answer is, yes.

If wet concrete cutting is done correctly, you should not need a respirator. However, what happens is that in the field, many variables occur. ((Engineering Controls)) Sometimes the water will be directed at the top of the blade (for cooling, not for dust control). The water must be directed at the cutting site on the blade in order to control dust.

Another variable is ((Administrative Controls)) clean up. Do the workers clean up the wet slurry? Or, do they wait till it’s dry and then use a leaf blower?  Do they vacuum the slurry? What happens when the job is done and the vacuum is in the shop? Does the employee wet it down, or blow it off?

Also, what happens when your worker is cutting wet and the water stops? Does he continue? What about if he get to a curb? Do they get the Stihl hot saw and cut wet? What if they don’t have water for that saw?

So, technically, if done correctly, a respirator should not be needed. However, if you don’t have the protocols, air monitoring data, and management controls in place to do it correctly, get a respirator.

Which respirator, you ask? Minimum would be a tight fitting negative pressure half face with HEPA filters. If they are knowingly performing concrete cutting dry – then it needs to be a full face respirator.

 

Leaded sheetrock is what the name says, sheetrock with a lead layer. It is used in hospital x-ray rooms and other health office clinics for containing / controlling the emitted x-rays while the machines are in use.

Plastering / Drywall companies who install this type of drywall need to follow the OSHA Construction Rules for lead work. I have heard of airborne exposures being at the exposure limits (50 ug/m3) during the installation due to the cutting and breaking of the drywall. My own personal monitoring has been below the Action Limit (30 ug/m3), but I have consistently found levels above the detection limit. This information should be taken as a caution to others.

For starters the employer will need to provide:

  • half face negative pressure tight fitting respirators with HEPA cartridges
  • protective clothing (like Tyvek (R))
  • containment (for the dust generated)
  • training (in lead and respirators)
  • hand washing / changing areas
  • HEPA vacuums for clean up
  • possibly air monitoring (by a qualified industrial hygienist)
  • possibly blood lead testing

The sheetrock should be contained during transport. Installation should be performed in a contained area with employees in respirators who are trained and competent. Clean-up should be done with HEPA vacuums. Air monitoring should be performed to assure that employees were adequately protected during their activities.

Working with this type of material is no excuse to cut corners (no pun intended). Protect your employees, the hospital, the patients, and others.