Management


Can we measure an exposure accurately with just one sample? (statistically, no.) Also consider: Can we measure a “worst case” scenario and be OK for the rest of the project? (again, hypothetical question)

There was a blog post, here by Mike Jayjock, which reminded me of how silly our data points (aka industrial hygiene sample results) are in the big picture of statistics.  I’m slowly reading a book titled, “Control Banding” by David Zalk who is with Lawrence Livermore National Labs. The CDC also has a section on control banding here.

Another side of this is a common practice we all perform called Risk Analysis. There is much on the subject, but essentially it’s similar to triage at an emergency room. What is the easiest, best thing you can do: given what you have available and what you are able to muster?safety triangle

Too often (myself included) we perform air monitoring for a specific situation and use that information as the gospel-truth. Well, this might be like living in the United States and never traveling. We meet a very nice person from the Ukraine. They seem very typical Eastern European and have a thick accent, but are they really like everyone in Russia? Is this person typical? Are they exactly like every other person from Russia?

This type of stereotyping is the same as taking one sample and drawing conclusions about all exposures. You might be right, BUT…you might be wrong.

There is a fun app you can download called, IH DIG by Adam Geitgey (Apple & Android).  This app illustrates the importance of using statistical tools, rather than guessing. (It’s a game)

Sorry I do not have many answers in this post, just a lot of questions.

Let’s clarify: You are a working adult. You are feeling symptoms (of some sort). And, you think it’s from something your exposed to while at work (in construction). This could include, but will not, the flu-bug. Below is a list of the most common construction illnesses.

Most Common Construction Illnesses:

  1. Upper respiratory
    • could be from silica, drywall, dust, asbestos, nuisance dust, chemicals (I won’t even try to list all of them)
  2. Skin (dermal, dermatitis) damage –
    • From: concrete, abrasion, chemicals
  3. Eyes
    • mostly from things that get into the eye.
  4. Cumulative trauma (ergonomics) or inflammation
    • repetitive motion, over a day hurts, imagine this for years
  5. Burn (heat or chemicals)
    • Usually around hot work like welding, but this can occur when using certian chemicals
  6. Hearing loss
    • cumulative trama to the ears when exposure is above about 85 decibels for any extended period of time.
  7. Poisoning– General or systemic
    • From: poison ivy, stinging needles, dog bites, bees, etc.

This list may vary depending on many things including what type of construction you are in; GC, heavy, civil, specialty, etc.  I put this list together to get a picture of where we see illnesses. However, as previously mentioned, and, everyone knows, the FOCUS FOUR is really where most injuries occur in construction.

We have seen the most prevention of illness due to one single device:

back supportthe back support.   ha. just kidding, of course.

I titled this post, “hazards of drywall”, but it encompassing most of the common hazards of plaster, mud, gypsum, wall-hangers, tapers, and acoustic employees.

  1. Corrosive drywall.

    I have not dealt with this subject on a personal level. However, AIHA has a new guidance document titled, “Assessment and Remediation of Corrosive Drywall: An AIHA Guidance Document“, which is a clarification of an earlier white paper document from 2000, titled, “Corrosive Drywall“. The danger is from a specific type of drywall which was imported from China. After installation it is known to emit sulfide vapors, which corrode copper (electrical wires), and can give off a sulfur smell (HT to JeffH in Ohio).

  2. Asbestos in mud/plaster.

    Be aware, some older buildings (pre 1980s) may have asbestos in the mud compound or plaster (not as common). This will be a concern if you are performing demo on these walls. Info here.

  3. Silica (dust) in joint (mud) compound.

    Some types of silica I have found to have silica. This can be an issue when sanding. AND, if you install drywall like me…you do a lot of sanding. More information from an earlier post can be found here. NIOSH has some suggestions too.

  4. Leaded sheetrock. If you are installing (or demo) leaded sheetrock, you NEED to protect yourself. Airborne levels of lead can approach the exposure limits, even during installation. More info here.
  5. Lead in paint. If you’re tying into existing plaster/drywall and there’s paint, you need to know if there’s lead in it. Sanding on the paint is a good way to be exposed. More info here.
  6. Ergonomics. Hanging the wallboard takes a toll on your body after 20 years (or less). Not to mention sanding. Washington OSHA (L&I) has a good demo.
  7. Noise. Cutting steel studs, powder actuated tools (there’s lead exposure too, you know).
  8. Skin hazards. Cutting, but also dermatitis from prolonged exposure to dust.
  9. Eye hazards. Dust, carpentry, etc. Working overhead is an easy way to get falling items in your eyes.
  10. Falls. Last on my list, but certainly not the least. Scaffolding, working from ladders, and using stilts, to name a few.

I previously wrote about a worst-case scenario in which asbestos was not discovered till after it was disturbed.TSI asbestos

Recently I heard a story of the opposite:

A general contractor hired a company to remove various pieces of asbestos. They had obtained an asbestos building survey, which clearly stated where the  asbestos was located. A boiler with surrounding insulation was identified as non-asbestos containing (asbestos-free). The employee was using a bobcat to demolish the boiler. As he started to tear into the insulation surrounding the boiler (disturb it), he paused. He checked the building survey again, and it had clearly stated it was “asbestos free” (actually 5 samples had been taken of the insulation around the boiler). Then, he did what most other people would not do: HE REFUSED to demo the insulation. He told the General Contractor and owner he thought it was asbestos containing and wanted it tested, AGAIN.

Guess what they found? Yep. Asbestos WAS contained inside the insulation around the boiler.

There was obviously some break-down in communication with the report, inspector, and possibly the lab.  However, this employee is to be commended and, really, the safety culture at this company should be congratulated. You never know where you will find asbestos.  The employee had enough guts to speak up for his safety (and for the others).

Measuring good-safety behavior is the type of thing we should reward. In the past (and still today) many safety-people measure losses ( ie. how many injuries). This is backwards thinking. We should be rewarding good behavior and encouraging people to speak up for safety.

For example; what do you say to this guy?

scaffold ladder

If you live in the United States, you have less than one month to train your employees on the new Hazard Communication standard (1910.1200(h) & 1926.59), which should include information about the new types of Safety Data Sheets (formerly known as MSDS) and the adaptation with the Global Harmonization System (GHS). December 1, 2013 is the enforcement start date for OSHA. Don’t make this complicated, it is straightforward. Here’s what you should do:

  • Train employees in hazard communication (simply: so they know the hazards they are working with)beer
  • Document your training (in case of an OSHA inspection)
  • Show them a sample Safety Data Sheet (SDS), compared with the old MSDS
  • Explain that the new SDS will not be available immediately, but will roll-out over a few years (or more)

*Please note the “Beer” hazard warning on the right is not GHS compliant. 

For Help:

It’s sad to say, but many construction companies have not yet started a formal hearing conservation program. Their solution is to purchase the best earplugs, for the lowest cost, and give them away like candy.

As I’ve mentioned before: Sometimes OSHA’s rules are protective (meaning: you will be safe) and other times they are really not on par with the health research. Hearing loss and OSHA’s method of measuring noise are NOT protective to employee health (your hearing). For the best method of measuring noise, look to the recommended guidelines of the ACGIH. In order to get the exact parameters, you must purchase their Guide to Occupational Exposure Values (TLVs) booklet. It hasn’t changed (at least for noise) for a few years, but it is still the most up to date on health for your hearing. Here’s a summary of some differences:

  • Exchange rate (how noise doubles and is averaged over time)
    • OSHA uses 5, ACGIH uses 3 >>which means noise doubles every 5, or 3 dB increase
    • this makes a BIG difference in your accumulated average noise level (TWA).
  • Exposure Limit, or Criterion Level
    • OSHA says 90 dBA, ACGIH says 85 dBA
    • Doesn’t seem too different (-5), but remember noise is logarithmic and it’s measured different by OSHA & the ACGIH

NIOSH also has some guidelines, which are very similar to the ACGIH.NIOSH noise

There are some strong benefits to having a hearing conservation program. Here are some examples and suggestions for bettering your own program.

If you have worked in construction for any period of time, you know how loud it can be, and how much exposure is out there. Don’t assume working in this industry that hearing loss will to happen to you. Do something about it. Here’s a presentation from CDC/NIOSH a few years back on how to start.

Hypothetically (and allegedly):demo1

  • You receive a project as a subcontractor.
  • You are verbally told no asbestos or lead onsite. Only that’s not true.
  • There is asbestos, and you, and multiple other subs, have disturbed it.
  • The prime contractor says, “oops”. Has the materials tested, and then blames the owner for not letting them know.
  • OSHA is called and citations are issued to the owner and GC for not testing and telling people.
  • A year goes by and now both the owner and GC are being sued by 5 employees for $10,000,000 (yep $10 million, that’s the max BTW).
    • As a footnote: this incidentally is not a worker compensation case (yet) since they are not suing their employer (they are suing the GC and owner)

Even if the employees don’t win $10m, are you prepared for: the headache, loss of client-relationship, trust breaking? Here’s a similar hypothetical article about such a situation.

On the flip side, here are some positive things you can do:

  • get a written copy of the building survey (lead & asbestos) ALWAYS. (you might also ask for cadmium, radon, other possible hazardous substances)
  • Train your employees about asbestos prior to having to deal with it.
  • Give employees the power to “stop work” if they are suspicious of possible asbestos containing material (PACM).
  • When handing out a building survey to your subs, get their acknowledgment (in writing, of course)
  • Fight your OSHA citations. Go to your informal conference. Present your evidence and, at the very least, beg for forgiveness.

Yep. Polychlorobiphenyls (PCB) are found in caulking. Typically buildings before 1979 have this caulk. (EPA Facts about PCB in Caulk) The only way to know is to test. BUT, wait!

Either:

  • Assume you have it and renovate with caution. Or,
  • Have the air tested for PCBs in the air.

Do not have a bulk sample taken. You should ask for an exposure assessment to be performed (air monitoring) by a qualified industrial hygienist. The reason is two-fold.

  1. The potential for the hazard is airborne. In most instances, people aren’t getting exposure from any other method.
  2. By measuring the air, you account for any other sources of PCBs (paint, ballasts, oils, ceiling tiles).

Most of this caulk is found in outdoor uses (high grade) in older buildings up to around 1980-ish. If an airborne exposure assessment finds levels below the acceptable rules & recommendations (depends on age & location), you may continue with your project. Of course, you would take appropriate precautions, like these recommendations from the EPA. They also have a very nice flow chart. Just like a choose-your-adventure book, make sure you don’t fall into the “Abatement” box!

EPA PCB Caulk flow chart

Let me first say that I am still learning about this hazard and why it is so dangerous.

Polyurethane foam is used as an insulating material. More info on it’s uses here. The danger is when you spray it (think: expandable type), or apply it, or cut/remove it after it’s cured. The danger is in the off-gassing.

There are two main considerations:spray foam

  • the process of applying the foam
    • spray type
    • quantity?,
    • ventilation?
  • the type (manufacturer/brand/type) of foam
    • curing rate,
    • type of hazard, etc.

What we know is that there is a hazard. AND, this hazard may not effect everyone, OR, it may not effect you until some time has gone by. But, some of the chemicals in these types of products include:

There is a huge potential for work related asthma when using these types of products. And, even contact with the skin can trigger an allergic response/asthma attack. If you have employees working around this type of product and have ANY respiratory symptoms (or asthma), please have them checked by an occupational medicine doctor.

Control of this hazard should include:

  • PPE for employees (respiratory, eye, & skin protection)
  • ventilation during application
  • ventilation during off-gassing & curing (can be 72 hours)
  • control plan for spills, cutting & demo
  • control plan for employee/occupants with asthma

The EPA has a quick reference card here (hat tip to Tom), and more detail from the EPA on how to control the hazard here. The Spray Polyurethane Foam Alliance has free training here (haven’t checked it out though), and be mindful that anyone can be an instructor (good & bad).

There are only a few instances when you are not required to perform fit testing. The main reason not to perform fit testing is if the employees are wearing a respirator voluntary. (meaning: it’s not required)

So, how do you know if it’s required? It’s required when:

  • You have overexposures to a substance (it’s required by OSHA to wear a respirator- so make sure you know, perform air monitoring), or
  • If everyone is wearing a respirator during this task (it’s probably also required, just not formally- ie. spray finishing, or my favorite sanding drywall dust) or,
  • If your company policy requires them to be worn (management says: it’s required to wearing a respirator during this task).

So, if you choose voluntary to wear a respirator and there is NOT a policy, or law, that says you HAVE to wear one then, you don’t need fit testing. (but you do need a few other things, Appendix D, etc.)

There is only one other exception:loose fitting respirator

  • loose fitting hooded /helmet atmosphere supply respirators (when used in areas not immediately dangerous to life and health (IDLH))

Some employers choose to use these types of respirators because:

  • the employee wears a beard
  • it is convenient to use
  • offers eye/face/neck protection
  • it offers a greater protection factor
  • it’s easier to don/doff (take on/off)

These guidelines for fit testing are different than medial testing before wearing a respirator, as spoken about here.

helmet respirator

« Previous PageNext Page »